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Abstract—In Edge Computing (EC), containers have been
increasingly used to deploy applications to provide mobile users
services. Each container must run based on a container image file
that exists locally. However, it has been conspicuously neglected
by existing work that effective task scheduling combined with
dynamic container image caching is a promising way to reduce
the container image download time with the limited bandwidth
resource of edge nodes. To fill in such gaps, in this paper, we
propose novel joint Task Scheduling and Image Caching (TSIC)
algorithms, specifically: 1) We consider the joint task scheduling
and image caching problem and formulate it as a Markov
Decision Process (MDP), taking the communication delay, waiting
delay, and computation delay into consideration; 2) To solve the
MDP problem, a TSIC algorithm based on deep reinforcement
learning is proposed with the customized state and action spaces
and combined with an adaptive caching update algorithm. 3) A
real container system is implemented to validate our algorithms.
The experiments show that our strategy outperforms the existing
baseline approaches by 23% and 35% on average in terms of
total delay and waiting delay, respectively.

Index Terms—Task scheduling, image caching, container, edge
computing.

I. INTRODUCTION

Edge Computing (EC) has played essential roles in reducing

application delays, e.g., real-time face recognition and video

surveillance [1]. Users request different services deployed in

nearby edge nodes or the remote cloud. Due to the hetero-

geneity of the nodes, tasks need to be scheduled effectively

to obtain lower communication and computation delay [2].

Due to the lightweight and easy-to-deploy features, containers

have been widely used to deploy services in EC with container

cluster management platforms like KubeEdge or K3s [3].

Each container must run based on a specific image, con-

taining all the necessary libraries and environments to run an

application to provide a specific service. In cloud computing,

if the requested image is not stored locally, it can be pulled

(i.e., downloaded) through high-speed bandwidth. However,

in EC, it is hard to guarantee communication quality due to

limited bandwidth, which may lead to a long time to pull
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the image. It is unacceptable if the image is pulled each time

when requested in EC. Besides, due to the limitation of the

storage resources of each node, it is impossible to store all the

images locally. Therefore, an effective caching algorithm for

images can significantly reduce the delay of user tasks in EC.

Moreover, the distribution of images also needs to be fully

considered when scheduling tasks so that many unnecessary

downloads can be avoided.

To perform the task scheduling and image caching effi-

ciently, the following challenges must be solved. First, how

to fully extract the complicated edge environment information

and make joint decisions. Current researches only consider

the limits of the CPU and memory resources of the nodes

without the storage resources [4]. He et al. [5] considered

homogeneous services. To fill in such gaps, different types

and numbers of images are considered for each node. Existing

researchers adopt Reinforcement Learning (RL) algorithms to

make joint decisions [6], [7]. However, most of these algo-

rithms are two-time-scale, which make decisions separately,

and environmental information cannot be fully considered. In

real systems, the state space is large and sparse due to the

heterogeneity of tasks and the complexity of system states.

Therefore, a state-sharing and multi-action RL algorithm is

proposed to use limited system state information better. A

Q-network composed of multiple parts is designed, and both

scheduling actions (decisions) and caching actions are output

by this Q-network while training with different rewards.

Then the second challenge is how to fully consider the

storage limit and image distribution when making decisions.

Some existing research on service placement in EC has

considered the storage resource limitation of each node [8],

[9], but when and which image needs to be removed are not

considered when the storage capacity is insufficient. Generally,

image cache removal is based on the Least Frequently Used

(LFU) algorithm, in which the frequencies of different types

of images are maintained with a fixed-size LFU memory

[10]. However, since the file size of each image is different,

it is not reasonable to consider the frequency with a fixed

size in EC. To solve these problems, an adaptive LFU-based

caching update algorithm is proposed, which is storage-aware,

variable-size, and container image size-weighted.
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In this paper, we first model the joint task scheduling and

image caching problem as a Markov Decision Process (MDP)

to minimize the communication and computation delay of

the tasks. Based on this, a Deep Q-Learning (DQL) based

algorithm is proposed with a shared state and multiple action

spaces combined with the adaptive LFU algorithm [10]. Fi-

nally, we implement our algorithms in a real container system

consisting of computers and Raspberry Pis. The deployment

of containers and images is controlled by the Docker Python

client and socket server [11], [12], and a controller node is de-

ployed to make task scheduling and image caching decisions.

Experimental results show that our algorithms perform better

than the baselines.

To sum up, the contributions of this paper are as follows:

• We first consider the joint task scheduling and image

caching problem and formulate it as an MDP, which aims

to minimize communication, waiting, and computation

delays. The heterogeneity of nodes and services is taken

into consideration.

• To solve this problem, a joint task scheduling and image

caching algorithm based on DQL is proposed, which

includes a state-sharing multi-action Q-network and com-

bined with an adaptive LFU caching update algorithm.

• Our algorithms are implemented in a real container

system. The experimental results show that our strategy

outperforms the baseline approaches by 23% and 35%

on average in terms of total delay and waiting delay,

respectively.

II. RELATED WORK

A. Joint Optimization

There have been many researches on joint task scheduling

and service placement optimization problems in EC [2], [4],

[5], [8], [9]. Some algorithms have been proposed to reduce

the overall latency effectively by jointly task offloading and

service caching. Li et al. [13] propose a joint frame scheduling

and model caching algorithm and deploy a target recognition

prototype to evaluate the performance. Zhang et al. [14]

propose a scheduling framework with an enhanced job perfor-

mance estimator that co-designs the cluster scheduler and the

cache subsystems for deep learning training. Xiao et al. [15]

aim to jointly optimize parallel task offloading and content

caching to minimize task delay and energy consumption.

Kamran et al. [16] present a framework for jointly optimizing

computation scheduling, caching, and request forwarding in

EC to enhance average task completion time performance.

Fan et al. [17] propose a resource management scheme that

jointly optimizes task offloading and service caching to max-

imize energy consumption benefits. However, they ignore the

chance that total delays can be further optimized by jointly

considering task scheduling and image caching in an online

manner.

B. Reinforcement Learning

Some algorithms have been proposed based on RL to

solve the task scheduling problem in EC. Tang et al. [18]

propose an RL-based layer-aware task scheduling algorithm to

minimize the task completion time. Chou et al. [19] address

the user association and video quality selection problem and

propose a deep deterministic policy gradient-based algorithm.

Tang et al. [20] introduce a collective deep RL algorithm

to optimize intelligence sharing policies. Gao et al. [21]

propose a decentralized computation offloading solution based

on the attention-weighted recurrent multi-agent actor-critic

for latency-sensitive tasks. Besides, there have been some

researches using RL for joint decision-making. Gu et al.
[22] propose an efficient GPU resource management platform

for deep learning jobs with intelligent resource requirement

estimation and scheduling. Qiao et al. [6] employ deep RL

for client selection and local iteration number decisions to

enhance content caching. Liu et al. [7] propose an approach

that employs parameterized deep Q networks to make joint

decisions on service placement and computation resource

allocation to minimize the total latency of tasks.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider an EC system that includes a set of edge nodes

N = {n1, n2, ..., n|N|}, a set of tasks U = {u1, u2, ..., u|U|},

a set of services V = {v1, v2, ...v|V|}, and a set of images

M = {m1,m2, ...,m|M|}. The nodes provide different kinds

of services. Tasks are generated from users and sent to the

nodes to be processed. The images are located in a remote

cloud or nearby nodes.

A node n ∈ N is located at location ln. Each node has

its CPU pn, memory en, and storage zn. A list of available

images Mn(t) is also maintained on each node. Generally, the

available resources at time slot t is denoted as pn(t), en(t), and

zn(t), respectively. There are |M| types of different images,

and at most one copy of each image is needed on each node

since multiple service instances providing the same service

are run based on the same image. As a result, the image list

Mn(t) can be denoted as Mn(t) = [x1
n, x

2
n, ..., x

|M|
n ], where

xm
n ∈ {0, 1}. If xm

n = 1, the image m ∈ M exists on node n.

Otherwise, it does not exist on this node.

Furthermore, each task u ∈ U has its requested service

vu ∈ V, data size zu, and the location lu. The requested

service is denoted as vu = [y1u, y
2
u, ..., y

|V|
u ], where yvu ∈ {0, 1}

denotes the request for each service type. If yvu = 1, task u is

requesting service v. It is assumed that each task only requests

one service. Thus
∑

v∈V yvu = 1. Some specific data needs to

be transmitted to the node to be processed for each task u,

and zu is used to denote the size of this data. The location of

the task is denoted as lu. For each node n, the set of users it

serves is denoted as Un.

To process the user requests, different services are provided

on each node. Each service v ∈ V runs based on an image

m, and multiple containers providing the same service can

run simultaneously based on the same image to increase the

service capacity. When starting a service v, the corresponding

image m must exist locally on the node. If not, the image

should be pulled first. Each image m has its file size zm.
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B. Cost and Constraints

In EC, the delay for task execution is significant to the users’

Quality of Service (QoS) [23]. So the system cost is defined

as the total delay dun of task executions, which is defined as:

dun = dcomm
un + dwait

un + dcomp
un , (1)

where dcomm
un denotes the communication delay. dwait

un is the

waiting time for service initialization, which includes the

pulling time of the image and the starting time of the service.

dcomp
un is the computation time for task processing.

There are also some constraints during scheduling. The

communication constraint of node n means that the total

bandwidth usage should not exceed the bandwidth of node

n, which is denoted as: ∑
u∈Un

bu ≤ bn, (2)

where bu is the bandwidth consumption of u, and bn is the

bandwidth capacity of node n. Besides, for node n, the CPU

and memory resources are limited as:∑
u∈Un

pu ≤ pn,
∑

u∈Un

eu ≤ en, (3)

where pu and eu is the CPU and memory consumption of task

u. One more important constraint that current work should

have seriously considered is the storage constraint of each

node. In EC, the storage capacity of each node is limited, e.g.,

the general storage capacity of a Raspberry Pi is usually 8GB

or 16GB, which is not large enough to store all necessary

images locally (the container size is usually a few hundred

MB). The storage constraint is then defined as:∑
u∈Un

zu +
∑
m∈M

xm
n × zm ≤ zn, (4)

where zu is the size of data received from task u.

C. Problem Formulation

In this paper, we aim to minimize the total delay of tasks

with the constraints. The problem is then defined as follows:

Problem 1:

min
∑
u∈U

∑
n∈N

(dcomm
un + dwait

un + dcomp
un )

s.t. Eqs. (2), (3), (4),

(5)

Problem 1 is an advanced bin-packing problem, which

is NP-hard and can only be solved heuristically. However,

most existing heuristic algorithms cannot solve the large-

scale problem in a real-world environment. In this problem,

dcomm
un , dwait

un , and dcomp
un can be represented as the addition

of dcomm
un (t), dwait

un (t), and dcomp
un (t) during each time slot

t. Besides, the first-order transition probability of the users’

resource demands is also quasi-static for a long period and

non-uniformly distribution by properly choosing the time slot

duration [23], which is a sequential decision-making process

and has memoryless property. Therefore, this problem can

be modeled as an MDP. To solve this problem, RL-based

algorithms are adopted.

IV. ALGORITHMS

A. Reinforcement Learning Settings

In RL algorithms, at each time t, the RL agent collects

system state st and calculates the reward during the last time

slot rt. Then, the agent selects an action at according to a pre-

defined strategy. After performing the action, the system would

transit to the new state st+1 in the next time slot. Similarly,

the RL agent will repeat the above operations, i.e., calculating

reward rt+1 and selecting new action at+1 according to st+1.

Among all kinds of RL algorithms, Q-learning [24] has an

advantage in fast computation, which is consistent with the

requirement of rapid decision-making in EC. The quality of

each state-action pair is indicated by Q-value Q(st, at). The

RL agent tends to select an action with a larger Q-value each

time. The Q(st, at) can be updated with the learning rule:

Q(st, at) ←(1− α)Q(st, at)

+ α

[
rt + γ ×max

at+1

Q(st+1, at+1)

]
,

(6)

where α is the learning rate and γ is the discount parameter.

State: The task scheduling decisions are made based on the

available resource capacity of all nodes and the features of

the coming task. The state of available resource for node n
at time t can be denoted as snt = [pn(t), en(t), zn(t),Mn(t)].
Then, the state of all nodes can be denoted as sN

t = {snt |n ∈
N}. Besides, for task u, the state can be denoted as sut =
[vu, zu, lu]. Then the state of the task scheduling decision can

be defined as sst =
[
sN
t , s

u
t

] ∈ Ss, where Ss is the set of all

scheduling states.

Furthermore, the distribution of all existing requests is also

needed for image caching decisions to determine the popular-

ity of images better and make more appropriate decisions. The

state of request distribution srt can be denoted as:

srt =

⎡
⎢⎣

w1,1(t) · · · w1,|M|(t)
...

. . .
...

w|N|,1(t) · · · w|N|,|M|(t)

⎤
⎥⎦ , (7)

where wn,v is the number of requests of service v on node n.

Then, the state of the image caching decision can be denoted

as:

sct = [sNt , sut , s
r
t ] = [sst , s

r
t ] ∈ Sc, (8)

where Sc is the set of all caching states. The state of task

scheduling sst is shared with the state of image caching. In

this way, the utilization of information and decision-making

accuracy can be effectively improved.

Action: The decision of task scheduling is made to select a

node for task processing, which can be denoted as ast ∈ As =
N. Moreover, the best action can be obtained as follows:

as∗t = argmax
as
t

(
Q(sst , a

s
t )|(Mas

t
(t) ∗ vut = 1)

)
, (9)

where Mas
t
(t) ∗ vut

is defined as follows:

Mas
t
(t) ∗ vut

= x1
ty

1
t + x2

ty
2
t ...+ x

|M|
t y

|M|
t . (10)
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If Mas
t
(t)∗vut

= 1, then the image of requested service exists

locally on node ast . The best action is to select a suitable

node with the requested image stored locally. Random action

is selected if the requested image is not located on any node.

Besides, when updating the image caching, the goal is to

select the most popular image to be cached on a node. Then the

action of image caching is defined as act = cm,n ∈ Ac, where

cm,n means that the image m is selected to be cached on node

n. The action of time slot t is finally defined as at = [ast , a
c
t ].

Scheduling and caching actions are selected based on ε-greedy

algorithm [23].

Reward: Task scheduling and image caching rewards are

also defined separately. For task scheduling, we aim to min-

imize the total delay, so the reward is set to the negative of

the total delay, which is defined as:

rst = −dun. (11)

In our real container system, the reward is collected asyn-

chronously after the task is completed.

Furthermore, image caching aims to find the most popular

image and deploy it to an appropriate node. The request

number of the image can represent the popularity of the image

after a caching decision is made. Therefore, the actions that

have a larger Q-value but have not been selected (unscheduled

actions) are recorded, which is denoted as:

Au
t = {aut |Q(sst , a

u
t ) > Q(sst , a

s
t )}. (12)

If there is no unscheduled action, then Au
t = ∅. A popularity

matrix gt for the task u at time t can be obtained, which is

defined as:

gt =

⎡
⎢⎣

g1,1(t) · · · g1,|M|(t)
...

. . .
...

g|N|,1(t) · · · g|N|,|M|(t)

⎤
⎥⎦ , (13)

where

gm,n(t) =

{
1, n ∈ Au

t ∩ ast and lu = v

0, Otherwise.
(14)

The popularity matrix gt is stored in a caching memory

Dc along with the state and caching action for future reward

calculation and network training, i.e., (st, cm,n, gt) is stored

to Dc at each time slot t. The reward is then calculated several

time slots after the caching action is made, e.g., every Tc time

slot. Then the reward can be defined as:

rct =

t+Tc∑
t

gm,n(t). (15)

Similarly, the reward in time t is denoted as rt = [rst , r
c
t ].

B. State-Sharing Multi-Action Scheduling Algorithm

The process of the state-sharing multi-action scheduling

algorithm is illustrated in Fig. 1. During each decision, firstly,

the system state st is obtained from EC environment, which

includes the sNt , sut and srt . Secondly, the scheduling and

caching actions are obtained from the Q-network with the
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Fig. 1: State-Sharing Multi-Action Scheduling Algorithm

Algorithm 1 Q-Network Update

Input: Ds, Dc

Output: θ
1: for D ∈ {Ds, Dc} do
2: Sample Dt ⊂ D

3: for
(
s
(j)
t , a

(j)
t , r

(j)
t , s

(j)
t+1

)
in Dt do

4: Calculate yd(t) by Eq. (18)

5: Calculate Lθ by Eq. (16)

6: end for
7: θ = argminθ Lθ

8: Return θ
9: end for

state. In the Q-network, the sub-networks, which include the

sNt -network and sut -network, are shared for scheduling and

caching decisions since this information is needed for both de-

cisions. Besides, the training data can be used more efficiently

by sharing these sub-networks. After that, the environment

returns the reward rt and the tuple (st, at, rt, st+1) is stored

in the replay memory, where at = [ast , a
c
t ], and rt = [rst , r

c
t ].

The tuples (st, a
s
t , r

s
t , st+1) and (st, a

c
t , r

c
t , st+1) are stored in

scheduling memory Ds and caching memory Dc, respectively,

for further Q-network update. Finally, the loss is calculated,

and the Q-network is updated with Algorithm 1.

In Algorithm 1, for each memory D ∈ {Ds, Dc}, first a

subset Dt is sampled from D and used to train the Q-network.

For each entry
(
s
(j)
t , a

(j)
t , r

(j)
t , s

(j)
t+1

)
in Dt, the corresponding

yt is calculated according to Eq. (18). Then the loss Lθ is

calculated by Eq. (16) and used to update the weights. Finally,

a gradient descent step is performed in the training network,

and the weights θ of the current network are occasionally

copied to the target network.

The historical information is stored in replay memory

[Ds, Dc]. The Q-value is denoted as Q(st, at; θ) with network

weight θ. The objective of the training is to minimize the loss

function Lθ, which is defined as:

Lθ = (yt −Q(st, at; θ))
2. (16)

However, only one DNN works as a whole leads to a

problem that the target is likely to shift with each update. To
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overcome this problem, a target network [25] is used, which

provides stable Q(st, at; θ
′). Moreover, yt is defined as:

yt = rt + γmaxQ(st+1, at+1; θ
′), (17)

where θ′ is the weight of the target network, which is

reset to θ from time to time. Furthermore, the max operator

maxQ(st+1, at+1; θ
′) in Eq. (17) uses the same Q-values both

to choose and to evaluate an action. This makes it more likely

to select overestimated values. To solve this problem, two Q-

value functions are learned by assigning experiences randomly

to update one of them in double Q-learning [26]. In Algorithm

1, the policy network can be used to evaluate the greedy policy,

and the target network can be used to estimate its value [26].

The target yt is then revised as follows:

yt = rt + γQ(st+1, argmax
a

Q(st+1, a, θ); θ
′). (18)

With Algorithm 1, the scheduling decision and caching de-

cision (for pulling the image) can be made. Then the adaptive

LFU-based caching algorithm (for removing the image) is

described as follows.

Algorithm 2 Adaptive LFU-based Caching Update

Input: E, act = cm,n, Dl(t− 1)
Output: Dl(t)

1: Set Mt = ∅
2: if m /∈ Mn(t) then
3: while zm +

∑
m′∈Mn(t)

zm′ > zn do
4: Add image mt to Mt by Eq. (20)

5: Remove image m from Mn(t)
6: end while
7: Remove all images in Mt

8: Pull image m
9: end if

10: Update priority of image m by Eq. (19)

11: Update LFU memory Dl(t)
12: Return Dl(t)

C. Adaptive LFU-based Caching Update Algorithm

The adaptive LFU-based caching update algorithm is shown

in Algorithm 2. The input is the EC environment E, caching

decision act = cm,n, and the LFU memory Dl(t−1). The out-

put is the updated Dl(t). The LFU memory Dl(t) contains the

memory Dn
l (t) for each node n, i.e., Dl(t) = {Dn

l (t)|n ∈ N}.

Each Dn
l (t) is an ordered dictionary that records the frequency

of each existing image m ∈ Mn(t).
As shown in line 1 of Algorithm 2, first, an image set Mt

is initialized, which is used to record the images that need

to be removed. Then, as shown in lines 2 - 9, if the request

image m is not located in node n, it needs to be pulled. Instead

of a fixed-size LFU memory, the LFU memory is maintained

according to the available storage capacity of each node. If

there is not enough available capacity, an image It is removed

according to the priority hmn, which is defined as:

hmn = fmn × zm, (19)

where fmn is the frequency of image m on node n. The

priority hmn is related to the size of the image. This is

reasonable since pulling a larger image takes more time,

making us tend not to remove large files frequently. The image

with minimal priority is removed, which is denoted as:

mt = argmin
m

(hmn|m ∈ Mn(t)). (20)

After removing all necessary images, the requested image m
is then pulled. Finally, as shown in lines 10 - 11, the priority of

image m is updated, and the LFU caching memory is updated.

Algorithm 3 TSIC

Input: u
Output: ast , a

c
t

1: for t ∈ [1, T ] do
2: if msg = request then
3: Get state st, action ast , and action act
4: Push (st, a

s
t ) to Dtmp

s , push (st, a
c
t) to Dtmp

c

5: Start the requested service on ast
6: Send ast to u
7: if t % CachingUpdate = 0 then
8: Call Algorithm 2 to update caching

9: end if
10: else if msg = reward then
11: Get reward rt = [rst , r

c
t ] by Eqs. (11), (15)

12: Get current state st+1

13: Get (st, a
s
t ) from Dtmp

s , (st, a
c
t) from Dtmp

c

14: Push (st, a
s
t , r

s
t , st+1) to Ds

15: Push (st, a
c
t , r

c
t , st+1) to Dc

16: Call Algorithm 1 to update the Q-network

17: if t % TargetNetworkUpdate = 0 then
18: Set θ′ = θ
19: end if
20: end if
21: end for

D. Joint Task Scheduling and Image Caching Algorithm

The joint Task Scheduling and Image Caching (TSIC)

algorithm is shown in Algorithm 3. The input is the task u with

a message msg and some other features defined in Subsection

III-A. The message msg is used to denote the request type

since the reward cannot be obtained in time, and it is collected

asynchronously. The output is the scheduling decision ast and

caching decision act . This algorithm runs on the controller node

with relatively sufficient computation resources. An agent on

the controller node is responsible for handling the requests.

At each time slot t ∈ [1, T ], the agent receives the request

from a new task u and extracts the message msg. As shown in

lines 2 - 9, if the request type is ‘request’, the agent first gets

the state st, action ast , and action act . Then, the agent pushes

the states and actions to temporary memories Dtmp
s and Dtmp

c

and starts the requested service on node ast . After that, the

agent sends the scheduling decision to the task. Furthermore,

if the container image caching needs to be updated on the

node, Algorithm 2 is called to update the caching.
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Fig. 2: System Workflow

Besides, as shown in lines 10 - 20, if the request type is

‘reward’, the reward is calculated according to Eqs. (11) and

(15). The reward tuples (st, a
s
t , r

s
t , st+1) and (st, a

c
t , r

c
t , st+1)

are pushed to corresponding replay memory. After that, the

Q-network is updated according to Algorithm 1. Finally, the

target network is updated from time to time.

V. SYSTEM IMPLEMENTATION

We have implemented a prototype container system to

validate the effectiveness of our algorithms.

A. System Workflow

The process of one task request is shown in Fig. 2. First, all

the components are started, and the user sends the request to

the controller node. The controller node receives the request

and makes the scheduling and caching decisions through the

agent. Then, the scheduling decision is sent to the selected

worker node to update the service status (e.g., pull necessary

images and start the requested service).

Meanwhile, the scheduling decision is also sent back to

the user. The user then sends the necessary data to the

corresponding worker node to be processed. Furthermore, the

caching decision is used to update the caching of the node

from time to time. Finally, the agent on the controller node

collects the scheduling decision, caching decision, reward, and

state to train the Q-network.

B. Main Components

The main components of the system include a controller

node, several worker nodes, and a list of users. The communi-

cations among different nodes and users are implemented by

Python socket server [12]. The operations of containers and

images are implemented with the Docker Python API [11].

Controller Node: A PC with an i7-8700 CPU, 16 GB ram,

and Ubuntu 18.04 OS is used as the controller node. The main

functions are as follows:

1) handle: Handle user requests according to different

request types described in Algorithm 3.

2) update node: Send image-related command to the cor-

responding node to update the image caching, including

the pull and removal of images.

3) get scheduling decision: Get the scheduling decisions

from the TSIC algorithm or other baselines.

4) get caching decision: Get the caching decisions.

5) network: The component of Q-network.

6) memory: The replay memory.

Fig. 3: Delay with Different LFU Memory Size

Worker Node: The worker nodes are a set of Raspberry

Pi 3 Model B+, with Cortex-A53 CPU, 1 GB ram, and 8 GB

(or 16 GB, 32 GB) Micro SD Card inserted. Different storage

spaces of Raspberry Pis bring the heterogeneity of nodes. The

main functions of worker nodes are described as follows:

1) handle: The core function processes the requests from

the controller node or users. The command type includes

initializing the node, updating the images, and process-

ing the request.

2) init node: Initialize the worker nodes, which includes

collecting the present image information and sending the

initial state to the controller node.

3) get state: Collect the node state, including the available

CPU, memory, storage space, and image list.

4) send state: Send node state to the controller node.

5) update image: Pull or remove the specific images.

6) check image: Check if an image exists on this node.

User: Another PC is used to simulate a group of users.

The requested service type is generated based on random

distribution. The main functions are illustrated as follows:

1) get user list: Generate the random user list.

2) send request: Send each user request to the controller.

3) send data: Send the user data to the scheduled worker

node to be processed.

4) send reward: Send the reward to the controller node.

VI. PERFORMANCE EVALUATION

A. Experimental Settings

The Raspberry Pis are evenly deployed in our laboratory

according to the rectangle shape. All the Raspberry Pis and

PCs are connected to a wireless router via WiFi. Since the

distance between the Raspberry Pi and the wireless router is

different, the transmission quality and speed of each Raspberry

Pi are different. The different delays are all recorded directly

in the experiment.

The images used in the experiments are built based on

different Python OpenCV Docker images [27], [28]. Some

Python code is written based on these images to perform

picture-processing tasks like graying and compression. The
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Fig. 5: Performance with Different Task Number

sizes of the built images range from 253.07 MB to 458.73

MB. Each node has several random images located on it when

initialized. Moreover, the ε in action selection is set to 0.5. The

γ is set to 0.5. The caching update frequency is set to 10, and

the target network update frequency is set to 5.

B. Experimental Results

Different LFU Memory Size: Fig. 3 shows the communi-

cation delay, waiting delay, computation delay, and total delay

with different LFU memory sizes. It can be concluded that

the Adaptive LFU (ADP) performance is better than the fixed-

size LFU. There is not much difference among the different

LFU sizes for communication delay. The reason is that the

proportion of communication delay is relatively small and will

not be the focus of the learning process.

For the waiting delay, it will be more significant if there are

more images to be pulled. As the LFU memory size increases,

the number of images that can be stored on each node grows.

Then the number of images that need to be pulled is less, and

the delay is reduced. To better reflect the impact of LFU size,

the storage capacity of each node is limited artificially. With

the limitation, the node with the most minor available storage

can only accommodate up to 10 miniature images. As a result,

the fixed-size LFU algorithm can easily reach the bottleneck

and cannot fully utilize the resources of each node. Moreover,

the image size-weighted LFU also performs better than the

LFU algorithm only based on frequency (ADP-FRQ in the

figure) because those images with a larger size but a lower

frequency will not be removed frequently.

Finally, our algorithm will be more inclined to select nodes

with more computation resources for computation delay. Gen-

erally, nodes with more available storage resources have more

available computation resources. Overall, from the overall

experiments, the total delay of the adaptive LFU is minimal.

Different Node Number: The performance of different

node number is illustrated in Fig. 4. GRD means the greedy

algorithm, and RR means the round-robin algorithm. Fig. 4(a)

demonstrates that the communication delay of TSIC is less

than GRD and RR. Besides, as the number of nodes increases,

the communication delay does not change much since it is

unrelated to the number of nodes.

In Fig. 4(b), the waiting delay of these algorithms is ordered

as TSIC < GRD < RR. TSIC makes caching decisions more

effectively, and the caching time is effectively reduced, which

is an essential part of the waiting time. Besides, the total

storage capacity increase as the number of nodes increases.

Then the images will not be removed frequently with the

same number of tasks. As a result, the waiting delay gradually

decreases as the number of nodes increases.

The computation delay of different algorithms is shown in

Fig. 4(c). In most cases, the greedy algorithm has the least

computation delay. The reason is that the greedy algorithm

always selects the node with the most available computation

resources. However, the difference between the computation

delay of TSIC and GRD is tiny. So, as a result, in Fig. 4(d),

the total delay of TSIC is the smallest.

Different Task Number: The performance with different

task number is shown in Fig. 5. As shown in Fig. 5(a), the

computation delay does not change much as the number of

tasks increases since it is not affected by the number of tasks.

The performance of the waiting delay is shown in Fig. 5(b).

As the number of tasks increases, some of the most popular
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images have been cached on different nodes, and the image

distribution will not change much. So when the number of

tasks increases, the waiting delay decreases first and then

stabilizes. Besides, the waiting delay of TSIC is the least.

As shown in Fig. 5(c), the performance of computation

delay is GRD < TSIC < RR. This is because the value of

the computation delay is much smaller than the waiting delay,

and the waiting delay is prioritized during training. Besides,

the greedy algorithm prioritizes computation resources. Such

a computation delay gap is acceptable because more waiting

delay is saved. Moreover, as shown in Fig. 5(d), the total delay

is TSIC < GRD < RR.

To sum up, the TSIC algorithm outperforms the GRD and

RR algorithms by 15% and 31% on average regarding the

total delay, respectively. Besides, the TSIC algorithm is better

for waiting delay than the GRD and RR algorithms, 28% and

43% on average, respectively. In short, the TSIC algorithm

outperforms the existing baseline approaches 23% and 35% on

average in terms of total delay and waiting delay, respectively.

VII. CONCLUSION

This paper has modeled the joint task scheduling and

image caching problem in EC as an MDP problem. First,

the system model was defined, whose cost function consists

of communication, waiting, and computation delays. Then, a

deep Q-learning-based joint algorithm was proposed. A state-

sharing multi-action Q-network was proposed to achieve better

decision-making, and an adaptive LFU-based caching update

algorithm was combined. Experiments with the real container

system have shown that our algorithms substantially reduce

the total delay and waiting delay compared with the baselines.

Future work will consider the mobility of mobile users and the

trade-off between edge nodes and remote clouds.
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